Predictive Role Of Oxidative Stress Biomarkers (Malondialdehyde, Glutathione, Catalase and Superoxide Dismutase) in Preeclamptic Pregnant Women In The Third Trimester Of Pregnancy

Authors

  • Edebiri O.E Universitas Ambrose Alli
  • Akpe C. I Universitas Benin
  • Adewole A.S Universitas Kedokteran
  • Onwuka K Universitas Negeri Abia
  • Obiesi C. N Nze P.O Universitas Federal David Umahi
  • Ohiwerei W.O Pusat Diagnostik dan Pelatihan Penelitian Global Ohilux

DOI:

https://doi.org/10.62951/ijph.v2i1.365

Keywords:

Catalase, Glutathione, Malondialdehyde, Preeclampsia, Superoxide dismutase

Abstract

The predictive role of oxidative stress in the pathophysiology of human pregnancy is of particular interest, as oxidative stress is increased in normotensive pregnant women through systemic inflammatory response, reactive oxygen species (ROS), and reactive nitrogen species (RNS). This study involved 40 consenting pregnant women recruited from St. Philomina Catholic Hospital, Edo State, Nigeria. Data obtained were analyzed using GraphPad Prism 9. Results were expressed as mean ± SEM, with a P-value of ≤ 0.05 considered statistically significant. Malondialdehyde (MDA) increased from 3.75 ± 0.42 U/L in normotensive women to 4.53 ± 0.59 U/L in preeclamptic women. However, this increase was not statistically significant (p<0.05; 0.2903). Catalase activity decreased from 114 ± 8.07 U/L in normotensive women to 84.02 ± 21.58 U/L in preeclamptic women, but this decrease was also not statistically significant (p<0.05; 0.1909). Superoxide dismutase (SOD) increased from 40.82 ± 1.23 U/L in normotensive women to 71.90 ± 5.61 U/L in preeclamptic women. This increase was statistically significant (p<0.05; <0.0001). Glutathione peroxidase (GSH) decreased from 66.74 ± 10.35 U/L in normotensive women to 50.63 ± 8.96 U/L in preeclamptic women, but this decrease was not statistically significant (p<0.05; 0.2466). These findings suggest the potential predictive roles of these biomarkers in identifying and monitoring preeclampsia.

Downloads

Download data is not yet available.

References

Afrose, D., Chen, H., Ranashinghe, A., Liu, C. C., Henessy, A., Hansbro, P. M., & McClements, L. (2022). The diagnostic potential of oxidative stress biomarkers for preeclampsia: Systematic review and meta-analysis. Biology of Sex Differences, 13(1), 26. https://doi.org/10.1186/s13293-022-00484-2

Armaly, Z., Jadaon, J. E., Jabbour, A., & Abassi, Z. A. (2018). Preeclampsia: Novel mechanisms and potential therapeutic approaches. Frontiers in Physiology, 9, 973. https://doi.org/10.3389/fphys.2018.00973

Bratovcic, A. J. A. S. (2020). Antioxidant enzymes and their role in preventing cell damage. Acta Sci. Nutr. Health, 4, 01-07. https://doi.org/10.31080/ASNH.2020.04.0263

Burton, G. J., Redman, C. W., Roberts, J. M., & Moffett, A. (2019). Pre-eclampsia: Pathophysiology and clinical implications. BMJ, 366, l2381. https://doi.org/10.1136/bmj.l2381

Carmo de Carvalho e Martins, M. D., Martins, da Silva Santos Oliveira, A. S., da Silva, L. A. A., Primo, M. G. S., & de Carvalho Lira, V. B. (2022). Biological indicators of oxidative stress [malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase] and their application in nutrition. In Biomarkers in Nutrition (pp. 1-25). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-75762-6_1

Chang, K. J., Seow, K. M., & Chen, K. H. (2023). Preeclampsia: Recent advances in predicting, preventing, and managing the maternal and fetal life-threatening condition. International Journal of Environmental Research and Public Health, 20(4), 2994. https://doi.org/10.3390/ijerph20042994

Chiarello, D. I., Abad, C., Rojas, D., Toledo, F., Vázquez, C. M., Mate, A., ... & Marín, R. (2020). Oxidative stress: Normal pregnancy versus preeclampsia. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866(2), 165354. https://doi.org/10.1016/j.bbadis.2020.165354

Drejza, M. A., Rylewicz, K., Majcherek, E., Gross-Tyrkin, K., Mizgier, M., Plagens-Rotman, K., ... & Jarząbek-Bielecka, G. (2022). Markers of oxidative stress in obstetrics and gynaecology—a systematic literature review. Antioxidants, 11(8), 1477. https://doi.org/10.3390/antiox11081477

Duley, L. (2009). The global impact of pre-eclampsia and eclampsia. Seminars in Perinatology, 33(3), 130-137. https://doi.org/10.1053/j.semperi.2009.02.003

Myatt, L., & Cui, X. (2004). Oxidative stress in the placenta. Histochemistry and Cell Biology, 122(4), 369-382. https://doi.org/10.1007/s00418-004-0726-1

Qiu, D., Wu, J., Li, M., Wang, L., Zhu, X., & Chen, Y. (2021). Impact of factors associated with oxidative stress on the pathogenesis of gestational hypertension and preeclampsia: A Chinese patients-based study. Medicine, 100(11), e23666. https://doi.org/10.1097/MD.0000000000023666

Redman, C. W. G., & Sargent, I. L. (2009). Placental stress and pre-eclampsia: A revised view. Placenta, 30, S38-S42. https://doi.org/10.1016/j.placenta.2008.12.010

Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative stress. Annual Review of Biochemistry, 86, 715-748. https://doi.org/10.1146/annurev-biochem-061516-045037

Tsikas, D., Suchy, M. T., Niemann, J., Maser, E., & Gutzki, F. M. (2016). Measurement of isoprostanes as oxidative stress markers in clinical settings: Methodological aspects and interpretation pitfalls. Biomarkers, 21(1), 55-69. https://doi.org/10.3109/1354750X.2015.1114257

Downloads

Published

2024-12-31

How to Cite

Edebiri O.E, Akpe C. I, Adewole A.S, Onwuka K, Obiesi C. N Nze P.O, & Ohiwerei W.O. (2024). Predictive Role Of Oxidative Stress Biomarkers (Malondialdehyde, Glutathione, Catalase and Superoxide Dismutase) in Preeclamptic Pregnant Women In The Third Trimester Of Pregnancy. International Journal of Public Health, 1(4), 221–231. https://doi.org/10.62951/ijph.v2i1.365