Impact of Estrogen Therapy on BRCA1-Associated Breast Cancer Progression in Transgender Women
DOI:
https://doi.org/10.62951/ijhm.v1i4.97Keywords:
Estrogen Therapy, BRCA1 Mutation, Transgender Women, Cell Cycle DysregulationAbstract
The combination of hormone treatment and genetic liabilities in transgender women leads to a complicated situation for breast cancer growth particularly linked to BRCA1 mutations. Gender-affirming treatment relies heavily on estrogen and causes intense cell growth and differentiation in breast tissue driven by estrogen receptor mechanisms. Mutations in BRCA1 lead to weak DNA repair processes which enhance an individual's vulnerability to cancerous changes. Rodestrogens enhance the functioning of proliferative pathways like PI3K/AKT and MAPK pathways in cells with dysfunctional BRCA1. This collaborative action elevates the threats posed by benign growths such as fibroadenomas leading to invasive breast cancer. By affecting the expression of vital regulatory proteins linked to cell proliferation estrogen further compromises the genomic integrity in cells harboring BRCA1 mutations. The hormone environment influenced by exogenous estrogen therapy can shape the tumor microenvironment for better cancer progression and metastasis. Comprehending the relationship between estrogen signaling and pathways related to BRCA1 is important for identifying the enhanced risk of cancer in transgender women using hormone therapy. This detailed study aligns recent discoveries regarding genetic vulnerability and hormonal impacts with cell mechanisms to reveal a detailed insight into breast cancer progression in these individuals. The study emphasizes the necessity for custom-designed cancer screening methods and targeted treatments to help mitigate risks and support transgender care. Understanding these pathways greatly enriches our knowledge of hormone-induced carcinogenesis among those who carry certain genetic markers while also guiding the creation of personalized care for transgender women at enhanced risk of breast cancer.
Downloads
References
Awaji, A. A., Maigoro, A. Y., Aborode, A. T., Akintola, A. A., Fatoba, D. O., Idris, E. B., Idris, A. B., Jafri, S., Shoaib, E., Onifade, I. A., Olapade, Z., Oladayo, M., Ihemegbulem, I. A., Ipede, O., Idowu, A. R., Alabi, F. V., Aruorivwooghene, I. J., Enaworu, O. R., Jamiu, A., … Adesola, R. O. (2024). Identification of key molecular pathways and genes in BRCA1 and BRCA2-mutant ovarian cancer: evidence from bioinformatics analysis. Genome Instability & Disease, 5(4), 164–182. https://doi.org/10.1007/s42764-024-00133-9
Banerjee, S., & Roy, S. (2021). An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update. Cell Cycle, 20(18), 1760–1784. https://doi.org/10.1080/15384101.2021.1966584
Bożyk, A., Wojas-Krawczyk, K., Krawczyk, P., & Milanowski, J. (2022). Tumor Microenvironment—A Short Review of Cellular and Interaction Diversity. Biology, 11(6), 929. https://doi.org/10.3390/biology11060929
Brogowska, K. K., Zajkowska, M., & Mroczko, B. (2023). Vascular Endothelial Growth Factor Ligands and Receptors in Breast Cancer. Journal of Clinical Medicine, 12(6), 2412. https://doi.org/10.3390/jcm12062412
Cao, J., Liu, D., Zhao, S., Yuan, L., Huang, Y., Ma, J., Yang, Z., Shi, B., Wang, L., & Wei, J. (2020). Estrogen attenuates TGF-β1-induced EMT in intrauterine adhesion by activating Wnt/β-catenin signaling pathway. Brazilian Journal of Medical and Biological Research, 53(8). https://doi.org/10.1590/1414-431x20209794
Chahat, Nainwal, N., Murti, Y., Yadav, S., Rawat, P., Dhiman, S., & Kumar, B. (2024). Advancements in targeting tumor suppressor genes (p53 and BRCA 1/2) in breast cancer therapy. Molecular Diversity. https://doi.org/10.1007/s11030-024-10964-z
Chou, C.-Y., Shen, T.-T., Wang, W.-C., & Wu, M.-P. (2024). Favorable breast cancer mortality-to-incidence ratios of countries with good human development index rankings and high health expenditures. Taiwanese Journal of Obstetrics and Gynecology, 63(4), 527–531. https://doi.org/10.1016/j.tjog.2023.11.012
Chung, S. H., Woldenberg, N., Roth, A. R., Masamed, R., Conlon, W., Cohen, J. G., Joines, M. M., & Patel, M. K. (2020). BRCA and Beyond: Comprehensive Image-rich Review of Hereditary Breast and Gynecologic Cancer Syndromes. RadioGraphics, 40(2), 306–325. https://doi.org/10.1148/rg.2020190084
Clusan, L., Ferrière, F., Flouriot, G., & Pakdel, F. (2023). A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. International Journal of Molecular Sciences, 24(7), 6834. https://doi.org/10.3390/ijms24076834
Cortesi, L., Piombino, C., & Toss, A. (2021). Germline Mutations in Other Homologous Recombination Repair-Related Genes Than BRCA1/2: Predictive or Prognostic Factors? Journal of Personalized Medicine, 11(4), 245. https://doi.org/10.3390/jpm11040245
Dama, A., Baggio, C., Boscaro, C., Albiero, M., & Cignarella, A. (2021). Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. International Journal of Molecular Sciences, 22(8), 4254. https://doi.org/10.3390/ijms22084254
Eleftheriades, A., Tsarna, E., Toutoudaki, K., Paschalidou, E., Christopoulos, N., Georgopoulos, I., Mitropoulou, G., & Christopoulos, P. (2023). Giant Juvenile Fibroadenoma: Case Report and Review of the Literature. Journal of Clinical Medicine, 12(5), 1855. https://doi.org/10.3390/jcm12051855
Foo, T. K., & Xia, B. (2022). BRCA1-Dependent and Independent Recruitment of PALB2–BRCA2–RAD51 in the DNA Damage Response and Cancer. Cancer Research, 82(18), 3191–3197. https://doi.org/10.1158/0008-5472.CAN-22-1535
Giaquinto, A. N., Sung, H., Miller, K. D., Kramer, J. L., Newman, L. A., Minihan, A., Jemal, A., & Siegel, R. L. (2022). Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72(6), 524–541. https://doi.org/10.3322/caac.21754
Glintborg, D., T’Sjoen, G., Ravn, P., & Andersen, M. S. (2021). MANAGEMENT OF ENDOCRINE DISEASE: Optimal feminizing hormone treatment in transgender people. European Journal of Endocrinology, 185(2), R49–R63. https://doi.org/10.1530/EJE-21-0059
Han, M. M., Hirakawa, M., Yamauchi, M., & Matsuda, N. (2022). Roles of the SUMO-related enzymes, PIAS1, PIAS4, and RNF4, in DNA double-strand break repair by homologous recombination. Biochemical and Biophysical Research Communications, 591, 95–101. https://doi.org/10.1016/j.bbrc.2021.12.099
Hauge, S., Eek Mariampillai, A., Rødland, G. E., Bay, L. T. E., Landsverk, H. B., & Syljuåsen, R. G. (2023). Expanding roles of cell cycle checkpoint inhibitors in radiation oncology. International Journal of Radiation Biology, 99(6), 941–950. https://doi.org/10.1080/09553002.2021.1913529
Hu, C., Polley, E. C., Yadav, S., Lilyquist, J., Shimelis, H., Na, J., Hart, S. N., Goldgar, D. E., Shah, S., Pesaran, T., Dolinsky, J. S., LaDuca, H., & Couch, F. J. (2020a). The Contribution of Germline Predisposition Gene Mutations to Clinical Subtypes of Invasive Breast Cancer From a Clinical Genetic Testing Cohort. JNCI: Journal of the National Cancer Institute, 112(12), 1231–1241. https://doi.org/10.1093/jnci/djaa023
Hu, C., Polley, E. C., Yadav, S., Lilyquist, J., Shimelis, H., Na, J., Hart, S. N., Goldgar, D. E., Shah, S., Pesaran, T., Dolinsky, J. S., LaDuca, H., & Couch, F. J. (2020b). The Contribution of Germline Predisposition Gene Mutations to Clinical Subtypes of Invasive Breast Cancer From a Clinical Genetic Testing Cohort. JNCI: Journal of the National Cancer Institute, 112(12), 1231–1241. https://doi.org/10.1093/jnci/djaa023
Huang, R.-X., & Zhou, P.-K. (2020). DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduction and Targeted Therapy, 5(1), 60. https://doi.org/10.1038/s41392-020-0150-x
Humphries, C., Petty, D. R., & Li, W. (2022). Complex Fibroadenoma with Pronounced Squamous Metaplasia: A Rare Case Report, Differential Diagnostic Considerations, and Associated Breast Cancer Risk. International Journal of Surgical Pathology, 30(2), 227–231. https://doi.org/10.1177/10668969211035842
Jin, T. Y., Park, K. S., Nam, S. E., Yoo, Y. B., Park, W. S., & Yun, I. J. (2022). BRCA1/2 Serves as a Biomarker for Poor Prognosis in Breast Carcinoma. International Journal of Molecular Sciences, 23(7), 3754. https://doi.org/10.3390/ijms23073754
Jurkovicova, D., Neophytou, C. M., Gašparović, A. Č., & Gonçalves, A. C. (2022). DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. International Journal of Molecular Sciences, 23(23), 14672. https://doi.org/10.3390/ijms232314672
Kloeber, J. A., & Lou, Z. (2022). Critical DNA damaging pathways in tumorigenesis. Seminars in Cancer Biology, 85, 164–184. https://doi.org/10.1016/j.semcancer.2021.04.012
Kothari, C., Diorio, C., & Durocher, F. (2020). The Importance of Breast Adipose Tissue in Breast Cancer. International Journal of Molecular Sciences, 21(16), 5760. https://doi.org/10.3390/ijms21165760
Lee, S. R. (2021). Surgery for fibroadenoma arising from axillary accessory breast. BMC Women’s Health, 21(1), 139. https://doi.org/10.1186/s12905-021-01278-5
Li, S., Silvestri, V., Leslie, G., Rebbeck, T. R., Neuhausen, S. L., Hopper, J. L., Nielsen, H. R., Lee, A., Yang, X., McGuffog, L., Parsons, M. T., Andrulis, I. L., Arnold, N., Belotti, M., Borg, Å., Buecher, B., Buys, S. S., Caputo, S. M., Chung, W. K., … Antoniou, A. C. (2022). Cancer Risks Associated With BRCA1 and BRCA2 Pathogenic Variants. Journal of Clinical Oncology, 40(14), 1529–1541. https://doi.org/10.1200/JCO.21.02112
Li, S., Wang, L., Wang, Y., Zhang, C., Hong, Z., & Han, Z. (2022). The synthetic lethality of targeting cell cycle checkpoints and PARPs in cancer treatment. Journal of Hematology & Oncology, 15(1), 147. https://doi.org/10.1186/s13045-022-01360-x
Loizzi, V., Dellino, M., Cerbone, M., Arezzo, F., Cazzato, G., Damiani, G. R., Pinto, V., Silvestris, E., Kardhashi, A., Cicinelli, E., Cascardi, E., & Cormio, G. (2023). The Role of Hormonal Replacement Therapy in BRCA Mutated Patients: Lights and Shadows. International Journal of Molecular Sciences, 24(1), 764. https://doi.org/10.3390/ijms24010764
Mekonnen, N., Yang, H., & Shin, Y. K. (2022). Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.880643
Miklikova, S., Trnkova, L., Plava, J., Bohac, M., Kuniakova, M., & Cihova, M. (2021). The Role of BRCA1/2-Mutated Tumor Microenvironment in Breast Cancer. Cancers, 13(3), 575. https://doi.org/10.3390/cancers13030575
Miziak, P., Baran, M., Błaszczak, E., Przybyszewska-Podstawka, A., Kałafut, J., Smok-Kalwat, J., Dmoszyńska-Graniczka, M., Kiełbus, M., & Stepulak, A. (2023). Estrogen Receptor Signaling in Breast Cancer. Cancers, 15(19), 4689. https://doi.org/10.3390/cancers15194689
Monticciolo, D. L., Malak, S. F., Friedewald, S. M., Eby, P. R., Newell, M. S., Moy, L., Destounis, S., Leung, J. W. T., Hendrick, R. E., & Smetherman, D. (2021). Breast Cancer Screening Recommendations Inclusive of All Women at Average Risk: Update from the ACR and Society of Breast Imaging. Journal of the American College of Radiology, 18(9), 1280–1288. https://doi.org/10.1016/j.jacr.2021.04.021
Peña-Guerrero, J., Fernández-Rubio, C., García-Sosa, A. T., & Nguewa, P. A. (2023). BRCT Domains: Structure, Functions, and Implications in Disease—New Therapeutic Targets for Innovative Drug Discovery against Infections. Pharmaceutics, 15(7), 1839. https://doi.org/10.3390/pharmaceutics15071839
Pogoda, K., Niwińska, A., Sarnowska, E., Nowakowska, D., Jagiełło-Gruszfeld, A., Siedlecki, J., & Nowecki, Z. (2020). Effects of BRCA Germline Mutations on Triple-Negative Breast Cancer Prognosis. Journal of Oncology, 2020, 1–10. https://doi.org/10.1155/2020/8545643
Rabellino, A., & Khanna, K. K. (2020). The implication of the SUMOylation pathway in breast cancer pathogenesis and treatment. Critical Reviews in Biochemistry and Molecular Biology, 55(1), 54–70. https://doi.org/10.1080/10409238.2020.1738332
Raimundo, L., Calheiros, J., & Saraiva, L. (2021). Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers, 13(14), 3438. https://doi.org/10.3390/cancers13143438
Rajan, A., Nadhan, R., Latha, N. R., Krishnan, N., Warrier, A. V., & Srinivas, P. (2021). Deregulated estrogen receptor signaling and DNA damage response in breast tumorigenesis. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1875(1), 188482. https://doi.org/10.1016/j.bbcan.2020.188482
Rajan, A., Varghese, G. R., Yadev, I., Anandan, J., Latha, N. R., Patra, D., Krishnan, N., Kuppusamy, K., Warrier, A. V, Bhushan, S., Nadhan, R., Ram Kumar, R. M., & Srinivas, P. (2022). Modulation of BRCA1 mediated DNA damage repair by deregulated ER-α signaling in breast cancers. American Journal of Cancer Research, 12(1), 17–47.
Sabiani, L., Barrou, J., Mathis, J., Eisinger, F., Bannier, M., Lambaudie, E., & Houvenaeghel, G. (2020). How to manage BRCA mutation carriers? Hormone Molecular Biology and Clinical Investigation, 41(3). https://doi.org/10.1515/hmbci-2019-0065
Santen, R. J., Heitjan, D. F., Gompel, A., Lumsden, M. A., Pinkerton, J. V, Davis, S. R., & Stuenkel, C. A. (2020). Underlying Breast Cancer Risk and Menopausal Hormone Therapy. The Journal of Clinical Endocrinology & Metabolism, 105(6), e2299–e2307. https://doi.org/10.1210/clinem/dgaa073
Somasundaram, A., Rothenberger, N. J., & Stabile, L. P. (2020). The Impact of Estrogen in the Tumor Microenvironment (pp. 33–52). https://doi.org/10.1007/978-3-030-50224-9_2
Song, Y., Barry, W. T., Seah, D. S., Tung, N. M., Garber, J. E., & Lin, N. U. (2020). Patterns of recurrence and metastasis in BRCA1/BRCA2 ‐associated breast cancers. Cancer, 126(2), 271–280. https://doi.org/10.1002/cncr.32540
Tarsounas, M., & Sung, P. (2020). The antitumorigenic roles of BRCA1–BARD1 in DNA repair and replication. Nature Reviews Molecular Cell Biology, 21(5), 284–299. https://doi.org/10.1038/s41580-020-0218-z
Turan, V., & Oktay, K. (2020). BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Human Reproduction Update, 26(1), 43–57. https://doi.org/10.1093/humupd/dmz043
Turban, J. L., Dolotina, B., King, D., & Keuroghlian, A. S. (2022). Sex Assigned at Birth Ratio Among Transgender and Gender Diverse Adolescents in the United States. Pediatrics, 150(3). https://doi.org/10.1542/peds.2022-056567
VOUTSADAKIS, I. A., & STRAVODIMOU, A. (2023). Homologous Recombination Defects and Mutations in DNA Damage Response (DDR) Genes Besides BRCA1 and BRCA2 as Breast Cancer Biomarkers for PARP Inhibitors and Other DDR Targeting Therapies. Anticancer Research, 43(3), 967–981. https://doi.org/10.21873/anticanres.16241
Xiang, D., Yang, J., Xu, Y., Lan, L., Li, G., Zhang, C., & Liu, D. (2021). Estrogen cholestasis induces gut and liver injury in rats involving in activating PI3K/Akt and MAPK signaling pathways. Life Sciences, 276, 119367. https://doi.org/10.1016/j.lfs.2021.119367
Yedidia-Aryeh, L., & Goldberg, M. (2022). The Interplay between the Cellular Response to DNA Double-Strand Breaks and Estrogen. Cells, 11(19), 3097. https://doi.org/10.3390/cells11193097
Zeng, F., Peng, Y., Qin, Y., Wang, J., Jiang, G., Feng, W., & Yuan, Y. (2022). Wee1 promotes cell proliferation and imatinib resistance in chronic myeloid leukemia via regulating DNA damage repair dependent on ATM-γH2AX-MDC1. Cell Communication and Signaling, 20(1), 199. https://doi.org/10.1186/s12964-022-01021-z
Zhou, J., Zhou, X. A., Zhang, N., & Wang, J. (2020). Evolving insights: how DNA repair pathways impact cancer evolution. Cancer Biology & Medicine, 17(4), 805–827. https://doi.org/10.20892/j.issn.2095-3941.2020.0177
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 International Journal of Health and Medicine

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.